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PULSE COMPRESSION DEGRADATION DUE TO OPEN LOOP
ADAPTIVE CANCELLATION, PART II

1. INTRODUCTION

An exact expression for the perturbed sidelobe level of a compressed pulse that has been pre-
processed through an adaptive canceller was derived in Ref. 1. The pertinent assumptions of that
analysis are:

1. the adaptive canceller was implemented by using the Sampled Matrix Inversion (SMI) algo-
rithm [2] or its equivalent, the Gram-Schmidt canceller [3],

2. the input noises were temporally independent and Gaussian,

3. the desired signal's input vector (or code) was completely contained within the samples that
were used to calculate the adaptive weights and is only present in the main channel, and

4. the adaptive weights were computed from the same data set to which they are applied (con-
current processing).

Earlier research has shown that because of finite sampling, the quiescent compressed pulse
sidelobe levels are degraded by preprocessing the main channel input data stream (the uncompressed
pulse) through the adaptive canceller. It was also shown that the level of degradation is independent
of whether pulse compression occurs before or after the adaptive canceller under assumption three.

The exact expression [1] for pulse compression degradation requires computer assistance to
evaluate this expression. This report derives a "rule of thumb" expression that is a good approxima-
tion to the exact expression.

2. BACKGROUND

Figure 1 is a functional block diagram of an adaptive canceller followed by a pulse compressor.
The adaptive canceller linearly weights the auxiliary channels with weights that are calculated from a
batch of sampled input data. The main channel consists of a desired signal plus noise that may or
may not be correlated with the auxiliary channels. It was shown in Ref. I that when analyzing the
pulse compression degradation it is necessary only to consider the interaction of the main channel's
desired signal with the random variables in the auxiliary channels (Fig. l). Thus for analysis pur-
poses, the adaptive weights of xl, n = 1, 2, ... , N - I are only a function of the desired signal s
and the samples of x,,. Furthermore, as the number of independent samples goes to infinity, the auxi-
liary adaptive weights go to zero [l].

Manuscript approved April 4, 1991.
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MAIN
CHANNEL: s

DESIRED |
SIGNAL
ONLY A

AUXILIARIES

x X2 xWl

SIGNAL

Fig. I - OS canceller followed by
a matched filter

In Fig. I, s represents the desired signal vector (or code) of length L, and
x,/, n = 1, 2, ... , N - I represents the nth auxiliary random data vector of length K. The cancelleT
shown is the Gram-Schmidt (GS), which is numerically equivalent to the SMI algorithm [31. We
denote it by GS0 KN where K is the number of samples per channel used to calculate the canceller
weights and N is the number of input channels (main and auxiliaries).

The pulse compressor is essentially the matched filter for a given radar waveform. Most of the
energy in the received radar waveform is compressed into a given single range cell and, thus, the sig-
nal level can be increased significantly for detection purposes. However, some energy does leak into
the sidelobes of the compressed pulse response, resulting in low gain in range cells outside of the
given range cell. If a target or piece of clutter is large enough, it can break through and be detected
in these range sidelobes, falsely indicating a target detection or masking a real target. Thus it is
highly desirable to maintain a low sidelobe response.

Let r equal the 2L - I output vector of the pulse compressor. If an adaptive canceller is not
being used, then it is straightforward to show that

r - S's (i)

2
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where

S = (SI, S2, ''

sT =

SL -2

SE -2

0

S-

St -I

0

0

S I S 2 S3 . ' SL

o S1 So * 2 5-

0 2. . . SL-o 0 S I . . . .

o 0 0 . . .

(2)

and TAr denotes transpose and complex conjugate transpose, respectively. S is a L x (2L - 1)
matrix called the autocorrelation function (ACF) matrix of s. If L c K, we define an augmented sig-
nal vector sag of length K such that the first L elements are elements of s and the remaining elements
are zero. Salg is defined as the augmented (2K - l) x (2K - 1) ACF matrix of s using the ele-
ments of %aug. The quantity raug is defined as the augmented 2K - I output vector of the pulse
compressor. Thus

raug = SlugSoug (3)

Let s' be the resultant output vector after s has been processed through the GS canceller and s',, be
the resultant augmented GS output vector. This resultant output vector is then inputted to the matched
filter of the vector s, or equivalently, s,,,g. If we set r' equal to the response of saug match filtered
with s then

, - VI &Il
-loug'lug AX\

In Ref. 1 it was shown under assumptions I through 4 (given in Section 1) that the average
pulse compressed sidelobe level after adaptive cancellation is given by

=- K(K + l)A 1I(K,N) SLq(l) + K(K + I)
4(1) -{(K - N + 1)(K - N + 2) (K - N + I)(K - N + 2) A 2(KN)I ) (5)

3
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where

SLaU!) is the average pulse compressed sidelobe level after adaptive cancellation of the /th range
sidelobe (sidelobes are numbered / 1, t = 1, 2, ..., these can be related directly to the
elements of r'; for example, I = + I are the sidelobes adjacent to the match point).

SLq() is the quiescent pulse compressed sidelobe level of the /th sidelobe (K = a or equivalently
no adaptive cancellation before pulse compression, these can be related directly to the ele-
ments of r)

K is the number of independent samples per channel used to calculate the adaptive canceller
weights

N is the number of channel (main and auxiliaries)

Sjlt) is the K-lth column of the augment AEC matrix Saudg' * K, and

,, iJ a 2 -,t JU\ - ,IX

Note that SL0(}) and SLq(/) are normalized to the mainlobe pulse compression gain (adapted or quies-
cent, respectively) which is set equal to one or 0 dB.

The scalars A II(K,N) and A 12 (K,N) are computed as follows. Consider the two parallel adap-
tive cancellers shown in Fig. 2. Define

u0 , v0 are arbitrary K-length main channel input vectors,

tvi. are K-lnnoth mnin channel output vector, and

x = x,(])x(l, x,(2). x,(K))T, n 12, , N - 1, K-length random data vector

nof toe siA au lir ch nn ... ..hy-Ut LIIC U Utl auxitilaty WIiaIIIIlvI.

The elements of x*2, n = 1, 2, N - 1, are assumed to have the following characteristics:

I. xj(k), n i, . N - i, k = 1, ... , K are identically distributed circular Gaussian com-
plex random variables (r.v.)

2. Elx,(k)t = 0, E J xjk) 2 1, where EtIl denotes expectation and j denotes magni-
tude

3. Eve (k 1)xn*-4k2)9 = 0 unless n I = n2 and k= k 2 , where * denotes complex conjugate.

4
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U0 X 1 X 2 ,N-1 YO X1 2

GSKN GSKN

hi 1 -1

Fig. 2 - Parallel N-input US cancellers

7

a,, I - 2 ± , i, .. 
a~t = K - K (K -n)(K -n + 1) fO.1..N-

= (K - n)(K - n + 1)

It is shown in Ref. t that

Et! UN-IVN-1 i 1] KAI(K,N)A; 2(K,N I I ubvoI2 1
LEtIiUN-1 I2VN-tI Ii] LA2l(KN) A 22 (KN) [ Iuo!I 2 Il[ 2 j

(6)

(7)

(8)

where

[AII(K,N) A 12 (K,N)j N-2 [a,, b,]

[A21 (KN A22(KN)j n=O Lbu I] a,

Equations (8) and (9) resulted from solving the following coupled recursive relationships that were
derived in Ref. 1:

[1 ,2 + JL K-n (K -n)(K -n + 1) 

+ E{1Iu 112 IvjI 21 K f I )] (10)

5
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r 1 ~~~~~1

Ettju 12 +~V I i| |t~ f' j = $ E n I I u',v I g 3g +i = E~Iuy~121 K n) (K ±n-f + 1)1 (1

± BEI}Ul 1vfl2} K - K' n + (K - n)K I-n + )

where n = 0, 1, ... , N 1.

3. BOUND DERIVATION

The expression derived for SL, given by Eq. (5), although exact, does not readily indicate how
the adaptive sidelobe level varies with N and K. In this section we derive a tight upper bound on SL,
that is in terms of explicit expressions of K and N.

T <.hA]1A ,-:,1_ *rz1r A / -1 - T- __ _, A- U_ / A~ _ _::_ f I I lT _
I H13 Lj}UIIU 1.n VU('jilGU UyU IIIUC , - L4v. \iUJ) tII I I 1). lILSLCd.U'L U s UtLiVLtUg a IccUIsiVe Miid-

tionship for Ejj[u,, 12fjtvll in this equation, we upper-bound this expectation by using the inequality
[4]

Etllu,}Ii2ivl: c v. . (2)

This inequality is merely another form of the Cauchy-Schwartz inequality. It allows us to upper-
bound the joint moment in terms of moments of individual random variables.

It was shown in Ref. 3 that

ElhUr~h4 } = ll, (K - n)(K- n + ,1) (13)
11-n h ~K(K ± 1)

and

i4) 1 i1 (K -n)(K -n + 1)
tE~vln 1 =vq4 K(K 1 1) t14)

Substituting these expressions into Eq. (12) results in

El IUl 2 1!v,1 I s luoIr 2 i2 (K - n)(K - i 1) ) (15)

K(K + 1)

Substituting Eq. (i5) into Eq. (10) results in

E Futtuv+, H • E( utvl (V K -._ ± (K 1 +uv )

+ IuIo2iiKvo K (K + ) -( 16)

6
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It is apparent from Eq. (16) that El I u,,v, 1 21, n = 0, 1 . . ., N-I can be upper-bounded by
w,1 where r±s, is found by the recursive relationshin

@,,+ = K K-n + (- n)(K -n + 1) jK( + 1) (17)

Initial condition (IC) w0 = I u~v0 12

We can show that owN -_ has the form

=0 [ K: -l (K-n)(K-n+ ) |ova! 

+ C IIuOII2IIVOI12, (18)

wherec i a r nnctnst tn be dAtermiinpd In fart rc dens not depend nn the initial condition a faet that
we use to find c. For uo = v0, it follows from Eq. (13) that

(I9)WN-1 = E(IIUN-. 114 1 L I - 2(N- 1) 1 (N - )Nj IIuo114i

Substituting Eq. (19) into Eq. (18) and solving for c,

C =lI _ 2(N- 1) + (N- l )N ' i [
K ~K(K + 1) n=O

2 1 I
1- + I. K -n (K -n)(K - n +1) J

It is shown in the Appendix that

N-2 2

t 1- K-n + (K - n)(K - n + 1)
(21)< I N ]- I

and

(K - N + 2)(N - 1)
K(K - I)(K + I)

Thus inserting these inequalities into Eq. (19) results in

FlI -I -h IV j 2- C

(22)

(I3}( V .-" -N -_ h 2 Iubvo!2 + (K-N + )(N- 1) ) 1u1li2iLu1_ii2ri- K j " K(K - l)(K + 1) l-ll 'IT1II

To find a bound on the adaptive compressed sidelobe level as was done in Ref. 1, we set
UO = saug and v0 = s,. where s,, is the augmented K-length signal vector and s,. is a column of the

7
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augmented signal matrix. We note that lIsji2 = I and that SLq = Is I2' It was shown in Ref. I
that the expected value of the match point of the compressed pulse preprocessed by a GSKN canceller
is

El ls' s12 } = (K - N + l)(K - N + 2)

K(K + 1)

Thus if we divide both sides of Eq. (23) by the expected value of the match point we find

Sf441) K_ ri - N -I 1 (l + sjl_(j _ N - I
__ ~ -K K(K -N +2)1 q " (K -N-t1)(K -1)

We set

Q(KN) = I - K(K - N + 2)'

ASLa(KN) - (K - N + 1)(K - I)

SLa1(1) < Q(K, N)SLq l) + AS4L(K,N)IlscQ(),12 .

Similarly, define the quiescent sidelobe level factor

Q (sK, N) S K(K + I)A j I (K, N)
(K - N + 1)(K - N + 2)

and the adaptive side perturbation

ASL (KN) =
K(K ± I)A 12 (K,N)

(K -N + I)(K -N +2)
(30)

so that Eq. (5) can be rewritten as

SLa) O QfK.N)SLqQl) + ASLiK,N) I1s' A)1!2. (31)

4. RESULTS

We now demonstrate mn granhical .form that O(K-N) and ASL,(K.N) are close approximations of

the quiescent sidclobe level factor Q(K,N) and the adaptive sidelobe pertuybation ASLCI(KN), respec-

tively. Define the following ratios

Q(K,N)
= N -.

Q(K. N)

S

(32)

(24)

and

(25)

(26)

Thus

(27)

(28)

(29)
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and

ASLJ(K,N) (33)

ASla {K, N)

We set Naja = N - land K MN where M is a positive integer and calculate r? and rs vs
Naux and M. We restrict M > 2. Many cases were run (M s 10, N s 100), and the two ratios
were always less than one and lower-bounded by the case when M = 2. Thus, we only present the
curves for M = 2. The close approximation is verified by the plots of rQ and rA shown in Figs. 3
and 4, respectively. The worst-case approximation of Q(K,N) by Q(K,N) occurs when N, - 1
M = 2. In this case rQ (dB) = -1.76 dB.

0.0 m=2

- 1.0

ro (dB)=- 1.76 dB FOR Na,,u= 1
- 2.0

30

-4.0

0.0 10 20 30 40 50 60 70 80 90 100

Na,,, NO. OF AUXILIARIES

Fig. 3 -r vs N,,,. M = 2

An even better approximation of Q(K,N) was found by using the expression

ASLQ(KN) = (K N + IK(34)

Note that the difference between the expression for ASL, given by Eqs. (34) and (27) is that the
K - I is replaced by K. Define the ratio

Aml, (/)rA ASLJ1)~~~~~~~~~~~ (35)
AS L,, (1)

Figure 5 plots this ratio for M = 2 vs N .. Note that the worst-case approximation occurs when
N,,/t, = 2, M = 2. In this case, r X (dB) = -. 51 dB.

9
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0.0

- 1.0

-2.0

a0

-3.0

-4.0

M=2

- 5.0 1 k I I I I I I

0.0 10 20 30 40 50 60 70 80 90 100 110

NaUX, NO. OF AUXULLARMES

Fig. 4- r, vs N,,k,, M = 2

0.o

- 1.01

- 2.D

-30

M=2

-\.Or kZdB)= - .51 dB

-4.0 
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Because Q(K, N) and ASL 0(K,N) are close approximations to Q(K, N) and ASL,(KN) respec-
tively, it is straightforward to show that

N -IA,2 (KN) L I - N i

A 12KN ='(K - N -r 2)(N - 1)
K(K - 1)(K + 1)

(36)

(37)

Again, if we replace K - 1 with K in Eq. (37), an even better approximation results:

A 12(K,N) =
(K - N + 2)(N - 1)

K2 (K + 1)

Inserting the approximate expressions given by Eq. (26) for Q (KN) and Eq. (34) for
ASL(K, N) into Eq. (31) results in

SL 0 Q1 L1 ,I -
N - I _ St (1) + N - 1 S (1)112

K(K -N + 2)J Sl K-N + l)K

Define K3dB(l) to be the minimum number of independent samples such that SL,(1) c 2SL,, where
SLq = max SLq(l); (i.e., the average adaptive sidelobe level at a specific range sidelobe I is at most 3

dB above the maximum quiescent sidelobe level). It is straightforward to show that

K3dB () - 2 + v

I, 1 ~~2L N- 1

2J + (N -i) -I S'.(1) 2
2SLq - SLq(l)

(40)

when SLEl(1) <C 1. The actual number of samples used to ensure that all adaptive sidelobes are
below 2 SLq would be

K3dB m nax K3aMl).
LI 1f0

(41)

If the maximum quiescent sidelobe level occurs close to the main lobe, then Is.112 - I and we find
that K3dB(I) is maximized at this maximum quiescent sidelobe level. Hence,

K, = 2 + v
L N 1 +N-

Sql

(42)

Reference I pointed out that the pulse compression degradation analysis can be applied to quan-
tifying the canceller degradation caused by a desired signal's presence in the samples used to calculate
the adaptive weights. If the desired signal has the power a2 after pulse compression, then the average

11

and

(38)

(39)
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power residue caused by the signal in the K - I range bins not containing the signal can be shown to
equal at most 42ASL,(K,N) plus possibly the signal power due to the quiescent compressed sidelobes.

Let au2in be the quiescent output noise power level of the canceller. Define

2

6(1) = ASL 6 (KN) 2' Isc(1lMI2 (43)
U min

and

6 = max 6(1). (44)
1,1O 0

One normally desires 6 c 1, otherwise the desired signal generates more range sidelobe power than
the noise power residue. Because max ljsj l I and using the good approximation for ASL,(KN)

IJL0
given by Eq. (34) then

N-i ~~~~~~~~~~~~(45)
(K - N + l)K a'

It is desirable to know the number of independent input samples KO such that 6 = 1. It can be

shown that

N-i - + (N -i) (46)
2; _ l Vi 2 J-2

2. 2 (C~~~~~~~~~~~~~~~ V kT\ -.t L .A.- C .

We note thatl lotJ? t equals the output signal-to-noise power ratlO kS/IV) oft Lit auaptivc carmciaci.

Thus Eq. (46) reduces to

AO N - 'i L/j +2 (Ns -i 1} ( -47)
2 V 2 J Kwh0.

5. SUMMARY

An exact expression for the perturbed sidelobe level of a compressed pulse that has been pre-
processed through an adaptive canceller was derived in Ref. 1. The exact expression requires com-
puter assistance to evaluate this expression. In this report, a "rule of thumb" expression is derived
uilai is a gvouu dyIsUMIIItt1IJ [U [LIC Cza-L IUi 1Ufl. l'UI lll1I11ULk., t111i 3"IUllla UpjJAIIk111LsL Whoa

used to derive a good approximation for the canceller noise power level that is induced by having a
desired signal present in the canceller weight calculation. An expression for the number of indepen-
dent samples necessary to equalize the signal-induced power with the quiescent interference level is
also rlnriwed.
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Appendix

PROOF OF EQS. (21) AND (22)

We first prove Eq. (21). Define

N -2
b = j I,1

N-2r
= r I 1-

n =O

N-2
- r I 1-

n =0

Now

N-2 r
I =o

2
K -n

K -n

2

K -n

+

+

±

2

K-n

I

(K n)(K - n + 1)J

2

(K - n)(K - n + 1)

2

(K - n)(K - n + 1)

+ 2
(K - n)(K - n + 1)

LI (K - n)(K - n - 1l)

I =0 (K- n)(K - n - 1 (Al

j (K - N + 1)(K - N + 2)
K(K + 1)

Il 2(N - I) +
K

b - (K - N + 1)(K - N + 2) N-<
K(K + 1) n=

(K - N + 1)(K - N + 2)
K(K + 1)

Now

N-2

,p=0 Ll {K - n2

2

(K - n)(K - n -

N-2 K

rl-0 (K - n)2j

(K + 1)(K - N + 1)
K(K-N + 2)

Thus

b < (K - N + 1)2
K2

2
I _ N - I

K.

15

Thus

N(N- 1)

K(K + 1) (A2)

1)

(A3)

(A4)

(A5)

I
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Next we prove Eq. (22). Set

+2(N - 1)
K

f N(N- t) 
K(K + 1)1

N -2 7
a > < -I

i -z aC I --

(K-n - 1)2

K(K-N)
(K - 1)(K - N + 1)

K(K - N)
(K - l)(K - N + 1)

N- I
(K - 1(K - N + 1)

Using Eq. (A7) and Eq. (20), it can be shown that

C = LI - 2(N - 1) + (N -l)N
K(K + 1)

Using Eq. (A9) it follows that

1 2(N -l1)
c C < I - 2K + (N -)N 

K(K + I) (K
N - I

- 1)(K - N + I)

C(K - N + 2)lN - I)
K(K - 1)(K + 1)

16

Now

(K -n)(K -l -l)

and

b = I

(A6)

or

(A7)

(AS)

(A9)

(1 - a). (A 10)

O2

(All)

(A 12)

N-2
a = 11 I -

N -0


